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respectively, of that for the control, cf. 450% for 
III. However, spectroscopic and chromatographic 
evidence indicated a small increase in the absolute 
amount of lycopene for I and II, compared with 
III and the control. The fluorescence of I- and 
II-treated samples was noticeably blue-green, 
whereas the others were characteristically green. 

In summary, production of |8-carotene can be 
markedly influenced in a short period (5 to 20 
hours) and of lycopene to a minor extent by use of 
compounds presumably providing terminal groups 
in the carotenoid molecule. Results are not in­
compatible with a tentative scheme postulated by 
Garton, Goodwin and Lijinsky.4 

(4) G. A. Garton, T. W. Goodwin and W. Lijinsky, Biochem. J.' 
49, 154 (1951.). 
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LIPOTHIAMIDE AND ITS RELATION TO A THIAMIN 
COENZYME REQUIRED FOR OXIDATIVE 
DECARBOXYLATION OF a-KETO ACIDS 

Sir: 
We wish to report evidence indicating that 

lipothiamide, a catalytic agent present in cellular 
extracts, is the amide of a-lipoic acid and thiamin, 
and suggesting that this moiety is part of a thiamin 
coenzyme required for oxidative decarboxylation of 
ot-keto acids. 

Natural materials contain a-lipoic acid, a cataly­
tic factor required for pyruvate oxidation,1 in 
bound condition. Acidic or basic hydrolysis de­
grades the bound material predominantly to a-
lipoic acid, whereas enzymatic hydrolysis releases 
"complex" forms of a-lipoic acid.1'2 

Our study of a-lipoic acid complexes was directed 
toward first obtaining an organism which required 
such a complex for growth. This requirement was 
exhibited by a mutant strain of Escherichia coli, 
developed by irradiating wild-type cells and isolat­
ing the mutant, using the penicillin technique. 

Whereas the mutant did not respond to a-lipoic 
acid in the presence of all other known vitamins 
and growth factors, it did respond to the a-lipoic 
acid complexes present in cellular extracts, or to 
substances formed by incubating a-lipoic acid and 
thiamin with wild-type Escherichia coli or Strepto­
coccus lactis cells. 

Bioautographs of the incubation mixture revealed 
the presence of two active principles, possessing R; 
values identical with those of two a-lipoic acid 
complexes present in cellular extracts. Both 
biosynthetic "conjugates" gave a negative thio-
chrome test and a positive azo test. These obser­
vations suggested that the two conjugates contain 
a-lipoic acid and thiamin conjugated through an 
amide linkage. 

Chemical synthesis studies support this conclu­
sion. Reaction mixtures obtained by heating a-
lipoic acid and thiamin in vacuo, and by treating 
thiamin with the acid chloride of a-lipoic acid, 

(1) I. C. Guusalus, el ill., J. Biol. Chem., 194, 850 (1952). 
(2) L. J. Reed, H al, ibid., 192, 851 (1051). 

produced maximum growth of the mutant at a level 
of 2.5 X 1O-6 7 per cc. of culture medium. In a 
similar manner, preparations active in catalytic 
amounts for the mutant have been obtained by 
condensing a-lipoic acid or its acid chloride with 
2-methyl-5-ethoxymethyl-6-aminopyrimidine, thia­
min monophosphate, and thiamin pyrophosphate, 
respectively. 

The active principles in chemical preparations of 
lipothiamide and its monophosphate possessed Rt 
values identical with the two active principles pro­
duced biosynthetically and with two of those pres­
ent in cellular extracts. Furthermore, treatment of 
lipothiamide monophosphate or pyrophosphate 
with intestinal phosphatase degrades these two 
factors to lipothiamide, as revealed with bioauto­
graphs. 

An investigation of possible coenzymatic func­
tions of lipothiamide and its phosphorylated de­
rivatives has revealed: (1) resting cell suspensions 
of the mutant will not oxidize either pyruvate or 
a-ketoglutarate unless one of these conjugates is 
added; (2) the growth requirement of the organism 
for lipothiamide can be completely by-passed by 
supplying the products (acetate, citrate and suc­
cinate) of these two blocked reactions. All three 
products, however, must be present. The induced 
mutation apparently destroys the capacity of the 
organism to conjugate a-lipoic acid and the pyrimi-
dine moiety of thiamin, resulting in a deficiency of 
an a-keto acid cooxidase required for the reactions 
producing the three essential metabolites. 
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LYSINE BIOSYNTHESIS IN TORULOPSIS UTILIS1 

Sir: 
In an isotopic study of biosynthetic mechanisms 

in Torulopsis utilis, data from yeast grown on 
methyl- and carboxyl-labeled acetate have pro­
vided a clue to the pathway of lysine synthesis in 
this organism. Cultural details and other experi­
mental procedures have already been described.2 

The lysine was isolated from the cell material by 
standard methods, and degraded by the following 
steps: decarboxylation with ninhydrin; oxidation 
to 5-aminovaleric acid; degradation of the latter 
by the Schmidt reaction3 to carbon dioxide and 1,4-
diaminobutane; oxidation of the latter to succinic 
acid; isolation of succinate carboxyls by the 
Schmidt reaction. Another sample of lysine was 
oxidized to glutaric acid and the glutarate carboxyls 
obtained by the Schmidt reaction. These pro­
cedures yielded individual activities of carbons 
1, 2, 3 and G, and the averages of carbons 4 and 5. 

(1) Aided by grants from the U. S. Atomic Hnergy Commission, Con­
tract No. ATI30 1)777, and by an institutional grant from the Ameri­
can Cancer Society. 

(2) M. Strassman and ,S. Weinhouse, T H I S JutjRNAi-, 74, 172G 
(1952). 

(3) E. F. Pharcs, Arch. Biochem. Biophys., 33, 173 (1951); we arc 
greatly indebted to Dr. Phares for supplying us with this method prior 
to publication. 


